
16 The Delphi Magazine Issue 71

Distribution
And Radix Sorts
This month we look at sorts
that don’t use comparisons

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

Way back in the mists of time
(September 1998, to be

precise) the Algorithms Alfresco
column was on sorting, the pro-
cess by which you rearrange a set
of items according to some order-
ing rule. At the time, all I wanted to
talk about was sorting keys by
using comparisons of the keys. We
discussed bubble sort and inser-
tion sort, selection sort and
shellsort, and quicksort, as well as
a couple of others. Later on, in
November 1998, we talked about
heapsort, another important sort-
ing algorithm, and finally we saw
mergesort in November 2000.

It turns out that all of these sort-
ing algorithms rely on key compari-
sons to do their work. We compare
two keys (however the keys may be
defined, or whatever type they
might be) and, based on the com-
parison, we may swap them over.
For bubble sort, the two keys are
always neighbours, but in the more
advanced sorting algorithms like
quicksort, the keys may be very
distant from each other (and
indeed it is because we can swap
keys and records over long dis-
tances that quicksort is faster than
bubble sort). It can be shown
mathematically that any sorting
algorithm that relies on key com-
parisons is at best an O(nlog(n))
algorithm.

Since we’ll be talking a little
about performance issues in this
article, let’s briefly recap the
big-Oh notation. All it means is
that, for sufficiently large n, the
performance of the algorithm in
question is proportional to the
expression inside the big-Oh
parentheses. So an algorithm
that’s described as O(n) has per-
formance that is proportional to
the number of items under consid-
eration. If we had twice as many

items, it would take twice as long.
An algorithm that has O(nlog(n))
performance runs proportional to
n times the logarithm of n. If we
measure a test with 1,000 items,
say, to take 1 second, then we cal-
culate the proportionality con-
stant to be about 0.00015 (in other
words, 0.00015 * 1000 * log(1000) =
1, using natural logs). Hence, it will
take about 2.3 seconds to apply the
algorithm to 2,000 items.

Does that mean that any sorting
algorithm is limited mathemati-
cally to O(nlog(n)) performance?
The answer, surprisingly, is no.
Since I didn’t want to particularly
muddy the waters in the previous
Algorithms Alfresco articles, I
ignored this important point at the
time, meaning to come back to it
when I wanted to. Well, it’s now
time, so this month we’ll look at
ways to improve sorting perfor-
mance for certain specialized keys.

And that, in fact, is an important
point to understand before we
start: we can only improve sorting
performance by understanding
and exploiting certain peculiarities
of certain key types. If we want to
generalize sorting to any key types,
with unknown comparison meth-
ods, the best we can do is an
optimized quicksort.

Before jumping in at the deep
end, we need to set some ground
rules and definitions. We shall be
sorting a set of items of some type,
most often an array of items. The
items will all reside in memory at
the same time (in other words, we
won’t be considering any form of
external or disk-based sorting).
The items we’ll be looking at have a
key. It is through the key that we
distinguish the items from each
other when we sort them. We’ll
assume that the key is some field of
the item (in other words, the item

is supposed to be a record or an
object), and we’ll state what type
the key is when we need to. (Notice
that this is different from last time,
where we never stated anything in
particular about the keys and
items we were sorting, instead
relying on a comparison routine to
tell us if the key for an item was less
than, greater than, or equal to
another.)

Distribution Sort
The first sorting routine we’ll dis-
cuss is called distribution sort or
counting sort. For this we assume
that the keys are integers in some
small range (say, byte values from
0 to 255, or character values).

If the keys all have the same
value, then there’s nothing to do
since the items are already sorted
by definition.

Suppose now, though, that the
keys have two distinct values, we’ll
call them 0 and 1. We can sort the
items like this. Make a pass
through the set of items, counting
the number of zeros and the
number of ones. If the number of
items with key 0 were n, say, then,
when sorted, they would occupy
the first n slots in the sorted array.
The remainder of the items, those
with key 1, would appear in the
second part of the array. This gives
us a small hint: we shall need to
copy the items from one array to
another. We use two counters: the
first will be for items with key 0 and
is initialized to that count, the
second for the items with key 1, ini-
tialized to that count plus the
count of items with key 0. (In other
words, the first count is the
number of items whose key is less

July 2001 The Delphi Magazine 17

than or equal to 0, the second
count is the number of items
whose key is less than or equal to
1.) We shall use these counters as
indexes to tell us where to put a
corresponding item when we copy
it over to the auxiliary array. Now
we make a second pass through
the unsorted array, going from the
end to the beginning. For each item
with key 0, we decrement the first
counter and copy the item over to
the auxiliary array, using the coun-
ter’s value as an index. For every
item we get with key 1, we decre-
ment the second counter, and we
copy the item over to the auxiliary
array using the counter’s value as
an index.

It is unlikely we would ever want
to sort items with only two possi-
ble keys, and so it seems pointless
to discuss it. However, this algo-
rithm will extend very easily to
items with byte-sized keys, or keys
that are characters, or keys that
are all within some ‘small’ numeric
range.

So let us suppose that we want to
sort an array of items using a
byte-sized key. There are only 256
possible values for this key. The
first step is to count the number of
occurrences for each possible
value. Simple enough, declare a
256 element array of integers,

our Counter array, set them all to
zero, and then make a pass
through the array of items. For
each key value encountered, incre-
ment the counter for that key. At
the end of this pass, Counter[0]will
contain the number of items with
key 0, Counter[1], the number of
items with key 1, and so on.

We now need to set the initial
index values for each key value.
Make a pass through the Counter
array, from the start to the end, set-
ting each value equal to itself plus
the value of the previous counter.
After this pass, Counter[i] will hold
the number of items whose key is
less than or equal to i.

Now we have the cumulative dis-
tribution values, we can copy the
items in the original array to the
auxiliary array using the Counter
values as indexes, in the same
manner as we did in the simple
two-valued key example. Stated
explicitly: make a pass through the
original array from end to start; for
each item, get its key, decrement
that particular counter, and use
the new value as an index where to
copy the item. We should, as a final
step, move all the items back from
the auxiliary array into the original
array in their sorted order.

Notice that we never make a
comparison of the byte keys: we
just use their values as index
values into one array or another
according to the dictates of the

algorithm. Distribution sort is a
O(n) algorithm: every item is
moved twice (once to the auxiliary
array, and once back again), and
every key is referenced twice
(once for the counting of the distri-
butions, and once as an index for
an item move).

Listing 1 shows an implementa-
tion of a distribution sort for items
that have a byte field as a key. It
starts off by creating an array of
unsorted items (each item having
a string data field and a byte key),
and then launches into distribu-
tion sort. Finally the code verifies
that the sorting operation was
successful.

If the keys are of a larger type,
say dates using the TDateTime type,
but restricted to a small range, say
a 10-year period, we can still use
distribution sort relatively easily
by subtracting the start point of
the range from each key before
using it. The range of keys is also
important: after all we shall be
declaring and using an array of
integers of the same size as the
range. If the range were larger than
the total count of the items (say
the range is from zero to 1,000,000,
but we only have 1,000 items to
sort, the time taken in housekeep-
ing (zeroing the counters, calculat-
ing the cumulative values) will
start to have a greater and greater
part to play in the overall perfor-
mance of the algorithm.

type
PaaItemByteKey = ^TaaItemByteKey;
TaaItemByteKey = record
ibkData : string; // the data
ibkKey : byte; // the key

end;
PaaItemByteKeyList = ^TaaItemByteKeyList;
TaaItemByteKeyList =
array [0..pred(ItemListCount)] of TaaItemByteKey;

procedure aaDistributionSort;
var
i : integer;
ItemList : PaaItemByteKeyList;
AuxList : PaaItemByteKeyList;
Counter : array [0..255] of integer;
PrevData : string;
PrevKey : byte;

begin
writeln('Distribution sort on a byte key');
{create an array of items with random keys to be sorted}
writeln('..building array to be sorted');
ItemList := AllocMem(sizeof(TaaItemByteKeyList));
for i := 0 to pred(ItemListCount) do begin
ItemList^[i].ibkData := Format('Item %5d', [i]);
ItemList^[i].ibkKey := random(256);

end;
writeln('..done, now starting sort...');
{clear the counter array}
FillChar(Counter, sizeof(Counter), 0);
{calculate the distribution of each key}
for i := 0 to pred(ItemListCount) do
inc(Counter[ItemList^[i].ibkKey]);

{calculate the cumulative distribution}
for i := 1 to 255 do

inc(Counter[i], Counter[i-1]);
{create the auxiliary list}
New(AuxList);
{copy over the items to the auxiliary list in sorted
order}

for i := pred(ItemListCount) downto 0 do begin
dec(Counter[ItemList^[i].ibkKey]);
AuxList^[Counter[ItemList^[i].ibkKey]] := ItemList^[i];

end;
writeln('..checking sort order...');
PrevData := '';
PrevKey := 0;
for i := 0 to pred(ItemListCount) do begin
if (AuxList^[i].ibkKey < PrevKey) then begin
writeln('Error: key out of sequence'); readln;

end
else if (AuxList^[i].ibkKey = PrevKey) then begin
if (AuxList^[i].ibkData <= PrevData) then begin
writeln('Error: sort not stable'); readln;

end;
PrevData := AuxList^[i].ibkData;

end
else begin
PrevKey := AuxList^[i].ibkKey;
PrevData := AuxList^[i].ibkData;

end;
end;
writeln('..done');
Finalize(ItemList^);
FreeMem(ItemList);
Finalize(AuxList^);
FreeMem(AuxList);

end;

➤ Listing 1: Distribution sort on
byte keys.

18 The Delphi Magazine Issue 71

Notice also that the way we
move the items means that distri-
bution sort is stable. Recall that the
stability of a sort defines what hap-
pens to items with the same key
during the sorting process. If items
a, b, c have the same key and are in
that order in the unsorted list (a
appears before b, and b appears
before c, possibly with items in
between) then they will be in that
same order in the sorted list, pro-
vided that the sort is stable. If the
sort were not stable, they could be
reorganized in any order whatso-
ever. The stability of a sort is not
something we need to worry about
generally; sometimes, however,
it’s very important. The code that
initializes the array to sort in List-
ing 1 sets a data field to be a string
value that’s sequential and
increasing. The verification rou-
tine also checks that the items with
equal keys keep their data fields in
sorted increasing order, in other
words verifying that the sort is
stable.

And String Keys?
Having seen distribution sort we
can immediately see that it’s not
very applicable to keys that are
strings. Or is it?

Let’s do a thought experiment.
Suppose we had a shuffled deck of
cards. How would we efficiently
sort them? We could try and hold
all 52 of them in our hand and then
apply a standard insertion sort
using our other hand, but it’s going
to be very unwieldy. Instead, let’s
use distribution sort on them. The
first key value we’ll use is the suit of
each card. Ready? Deal out the
cards into four piles, one each
for clubs, diamonds, hearts and
spades. That’s how simple distri-
bution sort can be!

Now each pile can be distribu-
tion sorted separately (using dis-
tribution sort for this is a little
bizarre, but bear with me: this is a
thought experiment, remember).
What have we done in this little
experiment? It’s as if we had a
two-character key associated with
each card. The first character is
the suit (C, D, H, S); the second is
the pip value of the card (A, 2, ..., 9,
T, J, Q, K). We use distribution sort

on the first character of each key to
sort the cards into suits. We then
use distribution sort on each of the
subsets we created (the suits)
using the second character of the
key. This is almost like quicksort:
to sort the whole list, you partition
the list and then apply the same
quicksort algorithm to each of the
parts.

Let’s generalize a little. Suppose
the keys are strings of lowercase
letters (that is, there are 26 possi-
ble values for each character). We
apply distribution sort to the first
character of the keys. What this
will do, in effect, is to partition the
items into bins, each bin containing
items whose keys start with a par-
ticular letter. We then apply the
distribution sort to each individual
bin, using the second letter of the
item’s key as the distribution sort
key. This will partition each bin
into at most 26 other sub-bins. We
then recursively apply distribution
sort to each of these sub-bins,
using the third letter of each key.
We don’t recurse, of course:
should there be one item or no
items in each sub-sub-sub-bin.

MSD Radix Sort
This is known as MSD radix sorting,
MSD standing for most significant
digit. What we are doing, in
essence, is treating the string as a
large number, with each character
being a digit in that number. The
number of possible values for each
digit is the radix, or base. So, in our
example, sorting keys containing
lowercase letters, the radix is 26.
We sort from the most significant
digit down to the least significant
(from start to end of the string).

Listing 2 shows the MSD radix
sort using all 256 values for each
character, rather than just 26.
Notice that each invocation of the
MSD routine will allocate a local
variable to hold the counter array,
and the routine is recursive. As we
want to cater for the possibility
that all character values would be
used, the counter array size is 1Kb
in size (that is, 256 * sizeof(inte-
ger)), and the effect of the
recursion on the stack could
become a problem, especially if the
strings were very long. In fact, so

that we can identify the bins when
making the recursive call, we need
a copy of the Counter array (here
called the Bins array) and so each
recursive call takes at least 2Kb of
stack. That means that, for a set of
40-character keys, we’ll be using at
least 80Kb of stack. Not for the
faint-hearted.

Having seen MSD radix sorting,
I’m sure you can see that it could
be very inefficient. We’re continu-
ally copying items to the auxiliary
array and back again. Even worse,
as we descend into the recursion,
the number of items in a sub-sub-
bin is mostly zero, so we’re doing
less and less work as we go
through the sub-sub-bins,
although there are more and more
of them.

Think about this for a moment:
the first sorting pass is based on
the initial letter, and we’ll find that
only a few bins are empty, provid-
ing that the keys are mostly
random in nature. The second
pass on each of the 26 bins from
the first pass will produce more
bins that are empty, and the third
pass even more. If the keys are not
random in nature, but are English
words or zip codes or phone
numbers, the number of empty
bins will be very many, and they’ll
overshadow the bins that have at
least one item in them.

Also, keys in real life tend not to
be nice and random, but repetitive
and similar. Think of sorting the
names in a telephone directory:
there’s an awful lot of Smiths in
there, and that would mean that all
the Smith records would need at
least five recursions before we
found a difference and were able to
start partitioning out the records.

The lots of empty bins problem
is hard to solve in the general case.
We have to try and use information
about our keys in order to guide
the separate recursions. For exam-
ple, what is the minimum charac-
ter, the maximum? We can
calculate this as we’re reading
through the keys calculating the
counts, and this knowledge will
save us some time by avoiding lots
of bins with zero counts.

If you have reviewed the
Algorithms Alfresco article from

20 The Delphi Magazine Issue 71

September 1998 (or you have read
chapter 5 of my book Tomes of
Delphi: Algorithms and Data Struc-
tures [Plug, what plug? Ed]) you will
know that I discussed optimizing
quicksort by using insertion sort
once the partitions got small
enough (about 15 items in a parti-
tion). Insertion sort is a good sort-
ing candidate on a set of items that
is in roughly sorted order because
its performance characteristic in
that situation is O(n). We can use
the same trick here. MSD radix
sort, after the first pass, has sorted
the set of items as far as the first
character. If we do a further MSD
radix pass on the second charac-
ter, the items will be very close to
their final position. (Unless of
course all the items have keys that
are the same as far as the first two
characters go. This isn’t too far
from reality: the example of which
I’m thinking here is that of sorting

the names of the source files for
one of TurboPower’s products. We
name source files so that the first
two letters of the name reference
the product, for example ‘FF’ for
FlashFiler, ‘LB’ for LockBox, and so
on. After two recursions of MSB
radix sort on this little lot, we’ll
have done absolutely nothing.) We
could then apply an insertion sort
to finish off the sorting, it being a
linear algorithm in that case.

LSD Radix Sort
Up until now, we’ve been discuss-
ing performing a radix sort on
string keys as a set of distribution
sorts going from first to last char-
acter. It’s not well known (but, par-
adoxically, in a time when
computers used card decks, it was
well known since it was the method
of choice for sorting punched
cards) that you can sort string keys
going from the last character to the
first.

This is hard to visualize, to say
the least: sorting by starting at the

end of the string keys and moving
to the start with each pass. Surely
the subsequent passes would
mess up the previous ones? Ordi-
narily, yes, but not with a stable
sort, and therein lies the trick.

Let’s imagine we wanted to sort
the five three-letter words: cat, pet,
mat, pen, one. We perform a stan-
dard distribution sort on the last
character. This gives us: one, pen,
cat, pet, mat. (Notice that, since dis-
tribution sort is stable, the words
cat, pet, and mat did not change rel-
ative position even through they
have the same key character in
this pass.) We now perform a dis-
tribution sort on the middle char-
acter (the second from the end).
The letters concerned are: n, e, a,
e, and a, and, seeing them like that
it’s easy to do the sort. We get: cat,
mat, pen, pet, one. Finally we do a
distribution sort on the first
character to get: cat, mat, one, pen,
pet.

With this easy example you can
see that the stability of the

type
PaaItemStrKey = ^TaaItemStrKey;
TaaItemStrKey = record
ibkData : string; // the data
ibkKey : string[9]; // the key

end;
PaaItemStrKeyList = ^TaaItemStrKeyList;
TaaItemStrKeyList =
array [0..pred(ItemListCount)] of TaaItemStrKey;

function GetRandomString : string;
var
i : integer;

begin
SetLength(Result, random(5) + 5);
for i := 1 to length(Result) do
Result[i] := char(random(26) + ord('a'));

end;
procedure MSD(aFromList, aToList : PaaItemStrKeyList;
aFirst, aLast : integer; aCharInx : integer);

var
i : integer;
Inx : integer;
Counter : array [0..255] of integer;
Bins : array [-1..255] of integer;

begin
{exit if we reached the maximum character position}
if (aCharInx > 9) then
Exit;

{if only one item, just exit: there's nothing to do}
if (aLast = aFirst) then
Exit;

{clear the counter array}
FillChar(Counter, sizeof(Counter), 0);
{calculate the distribution of each key}
for i := aFirst to aLast do
if (length(aFromList^[i].ibkKey) < aCharInx) then
inc(Counter[0])

else
inc(Counter[byte(aFromList^[i].ibkKey[aCharInx])]);

{calculate the cumulative distribution}
Bins[-1] := 0;
Bins[0] := Counter[0];
for i := 1 to 255 do begin
inc(Counter[i], Counter[i-1]);
Bins[i] := Counter[i];

end;
{copy over the items to the "to" list in sorted order}
for i := aLast downto aFirst do begin
if (length(aFromList^[i].ibkKey) < aCharInx) then begin
dec(Counter[0]);
aToList^[aFirst + Counter[0]] := aFromList^[i];

end
else begin

Inx := byte(aFromList^[i].ibkKey[aCharInx]);
dec(Counter[Inx]);
aToList^[aFirst + Counter[Inx]] := aFromList^[i];

end;
end;
{move the sorted data back}
Move(aToList^[aFirst], aFromList^[aFirst],

succ(aLast - aFirst) * sizeof(TaaItemStrKey));
{recursively sort each of the bins}
for i := 0 to 255 do begin
if (Bins[i] > Bins[i-1]) then
MSD(aFromList, aToList, aFirst + Bins[i-1],
aFirst + pred(Bins[i]), succ(aCharInx));

end;
end;
procedure aaMSDRadixSortStr;
var
i : integer;
ItemList : PaaItemStrKeyList;
AuxList : PaaItemStrKeyList;
PrevKey : string;

begin
writeln('MSD radix sort on a string key');
{create an array of items with random keys to be sorted}
writeln('..building array to be sorted');
ItemList := Allocmem(sizeof(TaaItemStrKeyList));
for i := 0 to pred(ItemListCount) do begin
ItemList^[i].ibkData := Format('Item %5d', [i]);
ItemList^[i].ibkKey := GetRandomString;

end;
writeln('..done, now starting sort...');
{allocate the auxiliary array}
New(AuxList);
{sort the items}
MSD(ItemList, AuxList, 0, pred(ItemListCount), 1);
writeln('..checking sort order...');
PrevKey := '';
for i := 0 to pred(ItemListCount) do begin
if (ItemList^[i].ibkKey < PrevKey) then begin
writeln('Error: key out of sequence');
readln;

end
else begin
PrevKey := ItemList^[i].ibkKey;

end;
end;
writeln('..done');
Finalize(ItemList^);
FreeMem(ItemList);
Finalize(AuxList^);
FreeMem(AuxList);

end;

➤ Listing 2: MSD radix sort
on string keys.

July 2001 The Delphi Magazine 21

distribution sort ensures that pen
and pet, once sorted according to
their last letter, stay sorted that
way through the other passes
where they have the same key
characters, no matter how many
other words end up between them,
until they end up next to each
other in the final pass. This sort is
known as LSD radix sort (where LSD
stands for least significant digit).

There is a small fly in the oint-
ment, however. When we want to
sort string keys, we generally do
not have strings that have the
same length (which this algorithm
seems to require). For null-
terminated strings it’s a pain in the
neck, agreed. However, for Pascal
strings (be they long or short), we
have the length value to help us. If
we’re sorting on a character index
beyond the length of the string, we
assume that the key’s relevant
character is the null character. You
can see that knowing the length of
the string helps immeasurably
here. For null-terminated strings of
unequal length, it’s more long-
winded: we shall have to calculate
the length of each string key
beforehand.

Listing 3 shows the LSD radix
sort sorting string keys. It uses an
auxiliary array (remember that dis-
tribution sort requires this extra
array since it must copy items over
as part of the algorithm), but it
uses it and the original array in a

to-and-fro pattern to minimize the
number of times we copy the items
(recall that standard distribution
sort requires each item to be
copied twice: once from the origi-
nal array to the auxiliary array and
once back again). There may have
to be a final copy at the end of the
LSD radix sort should the length of
the longest key be odd.

This sort is pretty fast, to say the
least. I did a comparison between
it and the fastest quicksort I had
(the one I’d developed for my
book) to sort 100,000 9-character
strings, and the radix sort came out
tops. But only just. I’ll talk about
this is a moment.

And Integer Keys?
So is LSD radix sort just for strings?
It certainly seems that way from
my description and introduction,
but in reality it isn’t. Let’s suppose
you wanted to sort a set of items
whose key was a 32-bit unsigned
value (a dword or longword). Could
we use LSD radix sort for this? Well,
one way would be to convert all the
dword values to strings and then
sort the strings, but that seems to
be a sledgehammer approach. A
better way is to use our under-
standing of how the dword values
are held in memory. A dword value
is 4 bytes long, and can be viewed
as a 4-digit number with each digit
being a value base 256. The digits
are held in reverse order in
memory. For example, the dword
value $12345678 is held as four
digits, $12, $34, $56, $78, in reverse

order (that is, the least significant
digit $78 is at the lowest address,
then $56, then $34, and finally $12 is
at the highest address). Ordinarily
we needn’t worry about this,
except when using a hex viewer,
but we can make use of this for the
LSD radix sort. View the dword
value as being a string of four char-
acters in reverse order, and do the
normal LSD radix sort, except that
we go from first digit to last digit,
instead of the other way round.
Listing 4 shows this specialized
radix sort.

What about longint values,
where the value could be negative?
This is harder. To see why, take an
example, the values -1 and 0. -1 is
held as $FFFFFFFF, whereas 0 is
$00000000. If we do a standard LSD
radix sort in the manner described
above for longwords, the -1 value
will be sorted after the 0 value.
What can we do? Well, we must
alter the key value so that the
problem with the negative values
is removed or hidden, and then
proceed as before. This trick used
to be somewhat well-known prior
to Delphi 5 when we didn’t have a
proper longword value and had to
use a longint instead.

To make the trick clear, suppose
instead we had smallint values
from -128 to 127 but we can only
sort them as unsigned bytes. In
hex, these values look like $80 to
$FF for -128 to -1, $00 for 0, and then
$01 to $7F for 1 to 127. Looking at
the hex values you can see that
although they seem to be pretty

procedure aaLSDRadixSortStr;
var
i : integer;
Inx : integer;
CharInx : integer;
ItemList : PaaItemStrKeyList;
AuxList : PaaItemStrKeyList;
FromList : PaaItemStrKeyList;
ToList : PaaItemStrKeyList;
Temp : PaaItemStrKeyList;
Counter : array [0..255] of integer;
PrevKey : string;

begin
writeln('LSD radix sort on a string key');
{create an array of items with random keys to be sorted}
...
writeln('..done, now starting sort...');
{allocate the auxiliary array}
New(AuxList);
{prepare for the loop}
FromList := ItemList;
ToList := AuxList;
{for each character in the key strings, from end to
start...}

for CharInx := 9 downto 1 do begin
{clear the counter array}
FillChar(Counter, sizeof(Counter), 0);
{calculate the distribution of each key}

for i := 0 to pred(ItemListCount) do
if (length(FromList^[i].ibkKey) < CharInx) then
inc(Counter[0])

else
inc(Counter[byte(FromList^[i].ibkKey[CharInx])]);

{calculate the cumulative distribution}
for i := 1 to 255 do
inc(Counter[i], Counter[i-1]);

{copy over the items to the "to" list in sorted order}
for i := pred(ItemListCount) downto 0 do begin
if (length(FromList^[i].ibkKey) < CharInx) then begin
dec(Counter[0]);
ToList^[Counter[0]] := FromList^[i];

end
else begin
Inx := byte(FromList^[i].ibkKey[CharInx]);
dec(Counter[Inx]);
ToList^[Counter[Inx]] := FromList^[i];

end;
end;
{switch over the to and from.lists}
Temp := FromList;
FromList := ToList;
ToList := Temp;

end;
if (FromList <> ItemList) then
Move(FromList^, ItemList^, sizeof(FromList^));

...
end;

➤ Listing 3: LSD radix sort
on string keys.

22 The Delphi Magazine Issue 71

much in order, they’re actually
separated in two parts, with both
parts being ordered, but with the
second half not being in order with
the first half. If you ponder for a
while you can see that for the nega-
tive numbers we need to clear the
sign bit (the most significant bit),
and for all the others we need to set
it. We would then have the repre-
sentation $00 for -128, $01 for -127,
to $7F for -1. 0 would be $80, and 1
to 127 would be $81 to $FF. So the
sign bit needs to be toggled, but the
other bits need to be left alone. The
XOR operation is the toggling opera-
tion (since 1 XOR 1 is 0, and 0 XOR 1 is
1, we need to XOR the sign bit with
1). It can also be used as a ‘leave it
alone’ operation (since 0 XOR 0 is 0
and 1 XOR 0 is 1, we need to XOR all
the remaining bits with 0). Hence
the simple expression (Smallint-
Value XOR $80) will give us a byte
value that can be sorted in the cor-
rect order, such that the original
smallint values are correctly
sorted.

Back to the longint value case:
I’m sure you can now see that
XORing a longint value with
$80000000 will give us a dword value
that can be sorted using LSD radix
sort. In fact, thinking about it, it is
only to the most significant digit
we need apply this trick, all the

other lesser significant digits
remain unchanged. Listing 5 shows
the small change you need to make
in order to sort longint values
using LSD radix sort.

Performance
Now we’ve looked at the various
sorts I wanted to discuss in this
article, let’s talk a little about their
performance aspects. Throughout
I mentioned the ‘official’ big-Oh
expressions for the sorts based on
distribution sort: basically they’re
all O(n). However, that is not the
complete picture. Take LSD radix
sort ordering string keys as an
example. Let’s say, for a large set of
items, it takes one second to per-
form one of the distribution sort
cycles on one of the character posi-
tions. Then, if the keys are all ten
characters long, it will take
(roughly) 10 seconds to fully sort
the keys. (I say ‘roughly’ because
there is some overhead involved
with the cycling through the char-
acters in the keys.) If the keys are
all basically random in nature then
quicksort will tend to be just as
fast, if not faster. Why? Because the
string key comparisons in
quicksort will not use all the char-
acters in the key. Mostly only one,
two or three characters of two
string keys will need to be com-
pared in order to ascertain which
is the larger. Quicksort can take
advantage of this quite easily,

whereas poor old LSD radix sort
has to use all the characters in the
keys.

In this kind of situation, we can
make a similar optimization with
LSD radix sort as we did with MSD
radix sort. We can sort based on
the first two or four (or some low
even number) characters of each
key. In other words, we start at the
fourth, and cycle back to the first.
What does this gain us? Well, after
this process the keys are pretty
well ordered, with only a few out of
sequence. Again, we switch to
insertion sort to finish off since it’s
a linear algorithm in these circum-
stances. (By the way, the reason
we choose an even number is to
make sure that all the items are in
the original array at the end of the
partial LSD radix sort, and inser-
tion sort is an in-place sort.)

I hasten to add, though, that this
analysis is based on the keys being
random in nature. Since Quicksort
exploits the randomness by
having fast comparisons, all we’re
doing is trying to exploit the same
effect: that nearly all keys are dis-
tinguishable by the first few char-
acters. If our keys followed some
other pattern, say surnames start-
ing with ‘Smi’, we’d have to alter
our optimization accordingly.

I think that’s one of the big les-
sons to be learned here. Although
distribution sort is very fast and
the performance is linear with

type
DWordAsBytes = array [0..3] of byte;

type
PaaItemU32Key = ^TaaItemU32Key;
TaaItemU32Key = record
ibkData : string; // the data
ibkKey : longword; // the key

end;
PaaItemU32KeyList = ^TaaItemU32KeyList;
TaaItemU32KeyList =
array [0..pred(ItemListCount)] of TaaItemU32Key;

function GetRandomU32 : longword;
var
i : integer;

begin
for i := 0 to 3 do
DWordAsBytes(Result)[i] := random(256);

end;
procedure aaLSDRadixSortU32;
var
i : integer;
Inx : integer;
CharInx : integer;
ItemList : PaaItemU32KeyList;
AuxList : PaaItemU32KeyList;
FromList : PaaItemU32KeyList;
ToList : PaaItemU32KeyList;
Temp : PaaItemU32KeyList;
Counter : array [0..255] of integer;
PrevKey : longword;
StartTime : dword;
EndTime : dword;

begin
writeln('LSD radix sort on an unsigned 32-bit key');

{create an array of items with random keys to be sorted}
...
writeln('..done, now starting sort...');
{allocate the auxiliary array}
New(AuxList);
{prepare for the loop}
FromList := ItemList;
ToList := AuxList;
{for each digit in the key longwords, from start to
end...}
for CharInx := 0 to 3 do begin
{clear the counter array}
FillChar(Counter, sizeof(Counter), 0);
{calculate the distribution of each key}
for i := 0 to pred(ItemListCount) do
inc(Counter[
DWordAsBytes(FromList^[i].ibkKey)[CharInx]]);

{calculate the cumulative distribution}
for i := 1 to 255 do
inc(Counter[i], Counter[i-1]);

{copy over the items to the "to" list in sorted order}
for i := pred(ItemListCount) downto 0 do begin
Inx := DWordAsBytes(FromList^[i].ibkKey)[CharInx];
dec(Counter[Inx]);
ToList^[Counter[Inx]] := FromList^[i];

end;
{switch over the to and from lists}
Temp := FromList;
FromList := ToList;
ToList := Temp;

end;
...

end;

➤ Listing 4: LSD radix sort
on longword keys.

July 2001 The Delphi Magazine 23

respect to the number of items, the
optimizations we can investigate
and implement will ultimately
depend on the keys we’re trying to
sort. We have to tailor and tune the
radix sorts to suit our data; we
can’t get optimal speed through a
generic process.

Another important point I’ve
glossed over, but is worth bearing

in mind, is this one: the distribu-
tion sort and the radix sorts all
require an auxiliary array. Items
are copied over from one array to
the other and back again during
the progress of the sort. Certainly
we can be very precise about the
number of times an item gets
copied (twice for distribution sort,
n or n+1 times for a radix sort on a
string of n characters) but the
arrays are in different parts of
memory. For large arrays, we are

...
{calculate the distribution of each key}
if (CharInx = 3) then
for i := 0 to pred(ItemListCount) do begin
Inx := (DWordAsBytes(FromList^[i].ibkKey)[CharInx]) xor $80;
inc(Counter[Inx]);

end
else
for i := 0 to pred(ItemListCount) do begin
Inx := DWordAsBytes(FromList^[i].ibkKey)[CharInx];
inc(Counter[Inx]);

end;
...
{copy over the items to the "to" list in sorted order}
if (CharInx = 3) then
for i := pred(ItemListCount) downto 0 do begin
Inx := (DWordAsBytes(FromList^[i].ibkKey)[CharInx]) xor $80;
dec(Counter[Inx]);
ToList^[Counter[Inx]] := FromList^[i];

end
else
for i := pred(ItemListCount) downto 0 do begin
Inx := DWordAsBytes(FromList^[i].ibkKey)[CharInx];
dec(Counter[Inx]);
ToList^[Counter[Inx]] := FromList^[i];

end;
...

➤ Listing 5: LSD radix sort
on longint keys.

more liable to be plagued with
page swaps and page faults;
thrashing, in other words. This will
be more noticeable with the sorts
we’re discussing here rather than
the in-place sorts we looked at
before: there are two arrays
instead of one.

Summary
The distribution and radix sorts
discussed here are very important
when you have a highly specific
sorting application that fits their
talents. The next time you have a
large amount of sorting to do,
experiment with one of the radix
sorts and try optimizing with inser-
tion sort, instead of just plumping
for standard quicksort.

Julian Bucknall works for Turbo-
Power Software. You can reach
him at julianb@turbopower.com

The code that accompanies this
article is freeware and can be used
as-is in your own applications.
© Julian M Bucknall, 2001

	Distribution Sort
	And String Keys?
	MSD Radix Sort
	LSD Radix Sort
	And Integer Keys?
	Performance
	Summary

